946 research outputs found

    A theorem for the beam splitter entangler

    Get PDF
    It is conjectured that the an entanglement output states from a beam splitter requires the nonclassicality in the input state(M.S. Kim, W. Son, V. Buzek and P. L. Knight, Phys. Rev. A, 65, 032323(2002)). Here we give a proof for this conjecture.Comment: Two relevant literatures added. To appear in Phys. Rev.

    Continuous-variable quantum teleportation of entanglement

    Full text link
    Entangled coherent states can be used to determine the entanglement fidelity for a device that is designed to teleport coherent states. This entanglement fidelity is universal, in that the calculation is independent of the use of entangled coherent states and applies generally to the teleportation of entanglement using coherent states. The average fidelity is shown to be a poor indicator of the capability of teleporting entanglement; i.e., very high average fidelity for the quantum teleportation apparatus can still result in low entanglement fidelity for one mode of the two-mode entangled coherent state.Comment: 5 pages, 1 figure, published versio

    Properties of a beam splitter entangler with Gaussian input states

    Get PDF
    An explicit formula is given for the quantity of entanglement in the output state of a beam splitter, given the squeezed vacuum states input in each mode.Comment: To appear in Phys. Rev.

    Quantum Walks driven by many coins

    Full text link
    Quantum random walks have been much studied recently, largely due to their highly nonclassical behavior. In this paper, we study one possible route to classical behavior for the discrete quantum random walk on the line: the use of multiple quantum ``coins'' in order to diminish the effects of interference between paths. We find solutions to this system in terms of the single coin random walk, and compare the asymptotic limit of these solutions to numerical simulations. We find exact analytical expressions for the time-dependence of the first two moments, and show that in the long time limit the ``quantum mechanical'' behavior of the one-coin walk persists. We further show that this is generic for a very broad class of possible walks, and that this behavior disappears only in the limit of a new coin for every step of the walk.Comment: 36 pages RevTeX 4.0 + 5 figures (encapsulated Postscript). Submitted to Physical Review

    Generation of two-mode nonclassical states and a quantum phase gate operation in trapped ion cavity QED

    Full text link
    We propose a scheme to generate nonclassical states of a quantum system, which is composed of the one-dimensional trapped ion motion and a single cavity field mode. We show that two-mode SU(2) Schr\"odinger-cat states, entangled coherent states, two-mode squeezed vacuum states and their superposition can be generated. If the vibration mode and the cavity mode are used to represent separately a qubit, a quantum phase gate can be implemented.Comment: to appear in PR

    Multipartite entangled coherent states

    Full text link
    We propose a scheme for generating multipartite entangled coherent states via entanglement swapping, with an example of a physical realization in ion traps. Bipartite entanglement of these multipartite states is quantified by the concurrence. We also use the NN--tangle to compute multipartite entanglement for certain systems. Finally we establish that these results for entanglement can be applied to more general multipartite entangled nonorthogonal states.Comment: 7 pages, two figures. We added more detail discussions on the generation of multipartite entangled coherent states and multipartite entangelemen

    Simulation of quantum random walks using interference of classical field

    Full text link
    We suggest a theoretical scheme for the simulation of quantum random walks on a line using beam splitters, phase shifters and photodetectors. Our model enables us to simulate a quantum random walk with use of the wave nature of classical light fields. Furthermore, the proposed set-up allows the analysis of the effects of decoherence. The transition from a pure mean photon-number distribution to a classical one is studied varying the decoherence parameters.Comment: extensively revised version; title changed; to appear on Phys. Rev.

    Asymmetric double barrier resonant tunneling structures with improved characteristics

    Full text link
    We present a self-consistent calculation, based on the global coherent tunnelling model, and show that structural asymmetry of double barrier resonant tunnelling structures significantly modifies the current-voltage characteristics compared to the symmetric structures. In particular, a suitably designed asymmetric structure can produce much larger peak current and absolute value of the negative differential conductivity than its commonly used symmetric counterpart.Comment: 1 paper, 3 figure

    Decoherence can be useful in quantum walks

    Full text link
    We present a study of the effects of decoherence in the operation of a discrete quantum walk on a line, cycle and hypercube. We find high sensitivity to decoherence, increasing with the number of steps in the walk, as the particle is becoming more delocalised with each step. However, the effect of a small amount of decoherence is to enhance the properties of the quantum walk that are desirable for the development of quantum algorithms. Specifically, we observe a highly uniform distribution on the line, a very fast mixing time on the cycle, and more reliable hitting times across the hypercube.Comment: (Imperial College London) 6 (+epsilon) pages, 6 embedded eps figures, RevTex4. v2 minor changes to correct typos and refs, submitted version. v3 expanded into article format, extra figure, updated refs, Note on "glued trees" adde

    Generation of arbitrary two dimensional motional state of a trapped ion

    Full text link
    We present a scheme to generate an arbitrary two-dimensional quantum state of motion of a trapped ion. This proposal is based on a sequence of laser pulses, which are tuned appropriately to control transitions on the sidebands of two modes of vibration. Not more than (M+1)(N+1)(M+1)(N+1) laser pulses are needed to generate a pure state with upper phonon number MM and NN in the xx and yy direction respectively.Comment: to appear in PR
    • …
    corecore